Huge tables are fixed parameter tractable via unimodular integer Caratheodory

نویسنده

  • Shmuel Onn
چکیده

The three-way table problem is to decide if there exists an l × m × n table satisfying given line sums, and find a table if yes. Recently, it was shown to be fixed-parameter tractable with parameters l, m. Here we extend this and show that the huge version of the problem, where the variable side n is encoded in binary, is also fixed-parameter tractable with parameters l, m. We also conclude that the huge multicommodity flow problem with a huge number of consumers is fixed-parameter tractable. One of our tools is a theorem about unimodular monoids which is of interest on its own right.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Huge tables and multicommodity flows are fixed-parameter tractable via unimodular integer Carathéodory

Article history: Received 29 February 2016 Received in revised form 27 June 2016 Accepted 25 July 2016 Available online 12 August 2016

متن کامل

Huge Unimodular N-Fold Programs

Optimization over l ×m× n integer 3-way tables with given line-sums is NP-hard already for fixed l = 3, but is polynomial time solvable with both l,m fixed. In the huge version of the problem, the variable dimension n is encoded in binary, with t layer types. It was recently shown that the huge problem can be solved in polynomial time for fixed t, and the complexity of the problem for variable ...

متن کامل

The complexity landscape of decompositional parameters for ILP

Integer Linear Programming (ILP) can be seen as the archetypical problem for NP-complete optimization problems, and a wide range of problems in artificial intelligence are solved in practice via a translation to ILP. Despite its huge range of applications, only few tractable fragments of ILP are known, probably the most prominent of which is based on the notion of total unimodularity. Using ent...

متن کامل

Fast Unimodular Counting

This paper describes methods for counting the number of non-negative integer solutions of the system Ax = b when A is a non-negative totally unimodular matrix and b an integral vector of fixed dimension. The complexity (under a unit cost arithmetic model) is strong in the sense that it depends only on the dimensions of A and not on the size of the entries of b. For the special case of “continge...

متن کامل

Fixed-parameter tractability of integer generalized scoring rules

We prove that for any integer generalized scoring rules (GSRs), winner determination and computing a wide range of strategic behavior are fixed-parameter tractable (FPT) w.r.t. the number of alternatives.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015